
JOURNAL OF MAGNETIC RESONANCE 130, 195–208 (1998)
ARTICLE NO. MN971297

1H and 2H NMR Relaxation in Hydrogen-Bonded Solids
Due to a Complex Motion: Classical Jumps

over a Barrier and Incoherent Tunneling

E. C. Reynhardt* and L. Latanowicz†

*Department of Physics, University of South Africa, P.O. Box 392, Pretoria 0003, South Africa; and †Institute of Physics,
Pedagogical University, Plac Slowianski 6, 65-069 Zielona Góra, Poland
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Equations for the temperature dependence of proton and deu- Therefore, these solids have double potential minima with
teron spin–lattice relaxation rates and second moments due to a equilibrium configurations A , B , and double (C , C * config-
complex motion consisting of classical jumps over a potential bar- urations) or single (D configuration) potential maxima, as
rier and quantum mechanical tunneling through the barrier have shown in Fig. 1. Hydrogen-bonded naphthazarines are par-
been derived. Asymmetric double and triple potential wells are ticularly suitable for detailed investigations of the energetics
considered. These equations have been employed to analyze proton

and dynamics associated with the proton transfer process.spin–lattice relaxation data for solid naphthazarin in the labora-
Reynhardt (11) measured proton spin–lattice relaxationtory and rotating frames as a function of temperature. It is shown
times of the B and C modifications of naphthazarin (5, 9)that tunneling plays an important role in the proton transfer dy-
as a function of temperature. A relaxation model in which thenamics of this compound. q 1998 Academic Press

proton jumps between two potential minima in the vicinity ofKey Words: spin–lattice relaxation; hydrogen bond dynamics;
tunneling; complex motions; naphthazarin B. adjacent quinonoid and hydroxyl oxygens failed to account

for the observed temperature dependence of the relaxation
times. A model in which the proton jumps over the barrier
between three potential minima yielded better agreementINTRODUCTION
between calculated and measured relaxation times, but the
result was not convincing.Systems in which a hydrogen atom undergoes an exchange

TTAA is another example of a material which exhibitsmotion within a hydrogen bond in a solid have been the
dynamic disorder of hydrogen atoms in the two N–HrrrNtopic of a number of research papers. This simple chemical
hydrogen bonds of the molecule. The four tautomericprocess, which results in an equilibrium dynamical disorder
forms correspond to the structures 1, 2, 3, and 4, as shownbetween tautomers in solids, is of great importance in many
in Fig. 2 (12 ) . These tautomers correspond to unequalchemical and biological processes (1) . For example, the
potential minima, the population of tautomer 4 being al-structure of crystalline naphthazarin is dynamically disor-
most zero. Therefore, the situation can be described by adered and involves a tautomeric equilibrium which is fast
triple potential well with equilibrium configurations 1, 2,at room temperature. The polymorphs of naphthazarin have
and 3. The minimum corresponding to configuration 1 isbeen studied extensively by using infrared, Raman, 13C
the deepest, while the other two minima are of almostNMR, and neutron and X-ray diffraction methods (2–10) .
equal depth (13 ) . The relaxation results for this moleculeTwo equivalent tautomeric forms, corresponding to the
have not been published yet.structures in which the two hydroxyl groups are on the same

Techniques in nuclear magnetic resonance (NMR) havering (Fig. 1a) , have been found. The transfer of the two
been employed to study the dynamics of hydrogen-bondedprotons seems to be a two-step process through an intermedi-
atoms and the shape of the potential wells in the solid stateate species in which the two hydroxyls are on different rings
(11–36) . In the simplest case the proton spin–lattice relax-(Fig. 1b) or as a one-step two-proton transfer proceeding
ation time is determined by homonuclear dipolar interactionsthrough the centrosymmetric species (Fig. 1c) (4) . How-
and, according to the well-established theory, the motionalever, theoretical calculations (2, 10) show that the intercon-
spectrum of the hydrogen atom is sampled at the protonversion of the two minimum energy tautomers has one abso-
Larmor frequency vI and at 2vI . If heteronuclear I–S inter-lute maximum and two saddle points. The absolute maxi-
actions are present, extra terms are introduced into the spec-mum corresponds to structure D (Fig. 1c) in which the two

hydrogen-bonded protons are equidistant from the oxygens. tral density function which determines T1 . Consequently,
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196 REYNHARDT AND LATANOWICZ

side is higher than the slope on the high-temperature side.
Meier et al. (14) and Nagaoka et al. (15) suggested that
quantum mechanical tunneling played an important role in
the proton transfer dynamics. Recently Skinner and Tromms-
dorff (19) developed a theory taking into account phonon-
assisted tunneling through the potential barrier and hopping
over the barrier. Their model accommodates the asymmetric
nature of the double minimum potential. It is assumed that
the Zeeman splitting is much smaller than the other energy
differences involving tunnel splittings. If the value of the
tunnel splitting is comparable with that of the Zeeman split-
ting, the transitions between the tunneling levels should be
taken into account in the relaxation equation.

In this paper the equations for the temperature dependence
of the polycrystalline proton and deuteron spin–lattice relax-
ation rates and second moment of the NMR line, in the
presence of a complex motion consisting of jumps over the
barrier and tunneling motion in asymmetrical double and
triple potential wells, are derived. It is assumed that both
motions are described in terms of individual correlation func-
tions and spectral densities. The correlation function of this
complex motion is considered to be the product of the corre-
lation functions of the individual motions. Possible ways of
distinguishing between the activation parameters of tunnel-
ing and jumps over the barrier are discussed.

The observed deviations from classical behavior, as re-
vealed by the lower slope on the low-temperature side of
the minimum of the ln T1 versus 1/T curve (11) , suggest

FIG. 1. The tautomerism of naphthazarin (see Refs. 2–10) .

the motional spectrum of the hydrogen nuclei is sampled at
frequencies of both the proton and the second nucleus (37–
39) . The spin–lattice relaxation of a nuclear spin which has
a quadrupole moment is dominated by the motionally in-
duced modulation of the electric field gradient at the site of
the nucleus. For deuterons the field gradient tensor is along
the 2H– X bond direction (X is the atom bonded to the deu-
teron), which simplifies the analysis of the data. The deu-
teron relaxation monitors the dynamics of the 2H– X bond
in the sample (40–42) . In most cases the ln T1 versus 1/T
curves associated with the proton transfer dynamics are not
symmetric, the slopes on the high-temperature side of the
minima being much steeper than those on the low-tempera-
ture side (11, 14, 15, 19, 20, 29, 34, 35) . Such spin–lattice
relaxation behavior cannot be interpreted in terms of a classi-
cal jump motion over the barrier in an asymmetric potential

FIG. 2. The tautomerism of TTAA (see Ref. 13) .well. For classical jumps the slope on the low-temperature
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197COMPLEX MOTION IN HYDROGEN-BONDED SOLIDS

that naphthazarin has the potential for displaying quantum
mechanical incoherent tunneling. Therefore, we have de-
cided to reanalyze the published data (11) , taking into ac-
count quantum mechanical tunneling.

REORIENTATION MODEL

The dynamics of the interconversion between the two tau-
tomeric forms A and B is governed by the rate constants kAB

and kBA for the forward and reverse crossing of the potential
barrier, respectively (Fig. 3a) . In hydrogen-bonded solids
the effect of neighboring molecules is to break the symmetry
of the potential well, resulting in an asymmetric potential
well with kAB x kBA . Debye (43) and Hoffman (44, 45)
proposed a model for jumps in a potential well to explain
the phenomenon of dielectric relaxation in solids. This model
can also be applied in the case of NMR relaxation. In the
Debye model the reorientation between the minima of a
potential well is described in terms of thermally activated
stochastic jumps over potential barriers. The rate constants
obey Arrhenius’ law, viz.,

k (O)
AB Å k 0

ABexpS0 EAB

RT D
k (O)

BA Å k 0
BAexpS0 EBA

RT D , [1]

where EAB and EBA are the heights of the potential barrier.
Usually the preexponential factors k 0

AB and k 0
BA are in the

range 1011–1012 s01 (11–36) .
For asymmetric potential wells coherent as well as inco-

herent tunneling can occur at low temperatures, but for sym-
metric potential wells the tunneling is always incoherent
(46) . Usually only one pair of tunneling levels is assumed,
but in reality there may be a number of vibrational levels
of the A and B sites which happen to coincide with each
other and which are split by the tunneling interactions. The
average over all possible transitions should be taken in the
calculations and the weighted average of the tunneling acti-
vation energy should be used. Nagaoka et al. (15) proposed

FIG. 3. Shapes of potential wells considered in the text. k (O)
xy , wherethat the spin–lattice relaxation is induced by the transitions

x , y Å A , B , C , 1, 2, 3, are rate constants for jumps over the barrier, whilebetween the ground state levels ( there is no splitting of the
k (T)

xy are rate constants for tunneling.ground state of the A configuration due to the asymmetry of
the potential well) and first exited levels. Activation energies
are required to make transitions between the ground states where ET (ú(EAB0 EBA)) is the activation energy for tunnel-
of the A(B) sites and the tunneling levels. The activation ing from the lower to the upper state. By detailed balance
energies for these transitions are expected to be small. Na- the down rate is
gaoka et al. (15) proposed the following rate constants for
low-temperature activated tunneling,

k (T)
BA Å k (T)

0 expS ET 0 DE

RT D , [3]

k (T)
AB Å k (T)

a expS0 ET

RTD , [2]
where DE Å (EAB 0 EBA) .
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198 REYNHARDT AND LATANOWICZ

Skinner and Trommsdorff (19) pointed out that at low 1
(T1)I

Å S(S / 1)g 2
I g

2
S\ 2

temperatures the rate constant should become temperature
independent, corresponding to direct phonon-assisted tunnel-
ing (spontaneous phonon emission) from the upper state to 1 F 1

12
J (0) (vI 0 vS) / 3

2
J (1) (vI)

the lower state. In this case Eqs. [2] and [3] would rather
be given by

/ 3
4

J (2) (vI / vS)G [8]
k (T)

BA Å k (T)
0

k (T)
AB Å k (T)

0 expS0 DE

RT D . [4] 1
(T1r)I

Å S(S / 1)g 2
I g

2
S\ 2

Skinner and Trommsdorff (19) developed a theory for 1 F1
3

J (0) (v1) / 3J (1) (vS)
hydrogen bond dynamics which accommodates the asym-
metric nature of a double potential well. The dynamics be-
tween the two minima is governed by the rate constants kAB / 1

12
J (0) (vI 0 vS) / 3

2
J (1) (vI)and kBA for the forward and reverse motions, respectively.

At low temperatures the motion is dominated by phonon-
assisted tunneling, and if EAB ú EBA , the tunneling rate con- / 3

4
J (2) (vI / vS)G [9]

stants are given by

for heteronuclear dipolar interactions. gI is the gyromagnetic
k (T)

AB Å k (T)
0

1
[exp((EAB 0 EBA) /RT )] 0 1

ratio of the resonant spins.
The angular NMR frequencies in the laboratory frame are

vI and vS , while v1 is the frequency of the rotating magnetic
k (T)

BA Å k (T)
0

exp((EAB 0 EBA) /RT )
[exp((EAB 0 EBA) /RT ) 0 1]

. [5] field and

In this model the tunneling relaxation between localized J (m ) (v)Å*
/`

0`

»Fm( t)Fm*( t/ t) …exp(0ivt)dt [10]
states occurs by one-phonon emission or absorption. Alterna-
tively, at high temperatures the proton transfer dynamics

are the spectral densities of the correlation functions of thefollows the Arrhenius law. Usually the preexponential factor
fluctuating part of the interaction Hamiltonian. These ran-k (T)

0 is of the order of 108 0107 s01 (19–21) .
dom functions are

SPIN–LATTICE RELAXATION RATES
F 0( t) Å R( t)(1 0 3 cos2[q( t)]) [11]

In the weak-collision limit the spin–lattice relaxation rates F 1( t) Å R( t)sin[q( t)]cos[q( t)]exp[ iw( t)] [12]
of a spin pair in the laboratory and rotating frames for the

F 2( t) Å R( t)sin2[q( t)]exp[2iw( t)] . [13]standard type of spin interactions, such as the direct dipole–
dipole interaction, are given by (37–39)

Here R( t) Å R03
ik ( t) , where Rik is the internuclear distance,

and q and w are the polar and azimuthal angles, respectively,1
T1

Å 3
2

I(I / 1)g 4
I \ 2[J (1) (vI) / J (2) (2vI)] [6] describing the orientation of the internuclear vector in the

laboratory frame with the z axis in the direction of the exter-
nal magnetic field B0 . Thermal motions or quantum tunnel-1

T1r

Å 3
2

I(I / 1)g 4
I \ 2

ing motions in the physical system cause R( t) , q( t) , and
w( t) to be time dependent.

The spin–lattice relaxation of a nuclear spin with a quad-1 F1
4

J (0) (2v1) / 5
2

J (1) (2vI) /
1
4

J (2) (2vI)G ,
rupole moment is dominated by the motionally induced mod-
ulation of the electric field gradient at the site of the nucleus.

[7] The spin–lattice relaxation of a nucleus with spin I Å 1,
which experiences quadrupolar relaxation resulting from the
interaction of the nuclear quadrupole moment with an axiallyrespectively, for homonuclear dipolar interactions and by
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199COMPLEX MOTION IN HYDROGEN-BONDED SOLIDS

symmetric electric field gradient, can be expressed as 1/t2 Å k12 / k21 / k23 / k32 . [18]
(40, 42)

k12 , k21 , k23 , and k32 are rate constants, as shown in Fig. 3b.
Also1

T1

Å 9
8
p 2[J (1) (vI) / J (2) (2vI)] . [14]

C1 Å
KAB

(1 / KAB)2In this case the spectral densities Jm(v) (Eq. [10]) refer
to the orientation function of the symmetry axis of the elec-

1 [K01
AB R(A)R(A) / KABR(B)R(B)tric field gradient. The quantity R( t) in Eqs. [11] to [13]

equals CQF Å »e 2q22Q /h … , which is the quadrupole coupling / R(A)R(B) 1 (3 cos2uAB 0 1)] [19]
constant expressed in hertz. The polar and azimuthal angles
q and w describe the orientation of CQF.

C2 Å
KAB

(1 / KAB)2

SECOND MOMENT OF AN NMR LINE
1 [R(A)R(A) / R(B)R(B)

It has been demonstrated (47) that best fits of equations 0 R(A)R(B)(3 cos2uAB 0 1)] , [20]
for the temperature dependence of the second moment of an
NMR line in the presence of a complex molecular motion where R(A) and R(B) are the discrete values of Rik or CQF
to the experimental second moment data yield the same in- at the A and B sites and the equilibrium constants KAB are
formation obtained from spin–lattice relaxation time mea- given by
surements as a function of temperature. The equation for the
dipolar second moment, M2 , of an NMR line was derived

KAB Å
k12

k21

by Van Vleck (48) and extended by Powels and Gutowsky
(49) , who showed that if the correlation function of a given
reorientation is known, the second moment of the NMR line

Å k23

k32

. [21]for a system of two homonuclear spins can be written as

B. 3U Potential (Fig. 3c)M2 Å
3
4
g 2

I \ 2I(I / 1) *
/dn

0dn

J (0) (v)dn [15]
After spatial averaging for a polycrystalline sample, the

autocorrelation function for the unperiodical and unequal
and for a system of two heteronuclear spins as

triple minimum potential (Fig. 3c) contains two correlation
times, characterizing the two modes of reorientation
(44, 45, 52, 53, 55, 56) , viz.,M2(I ) Å

1
2
gIgS\

2S(S / 1) *
/dn

0dn

J (0) (v)dn, [16]

»Fm( t)Fm*( t / t) …
where dn is the linewidth, v Å 2pn Å g

√
M2 , and J 0(v) is

the spectral density (Eq. [10]) of the correlation function Å ZmFC1 / C2expS0 ÉtÉ

t31
D / C3expS0 ÉtÉ

t32
DG ,

of the random function F 0( t) given by Eq. [11].

[22]CORRELATION FUNCTIONS FOR A
UNIAXIAL REORIENTATION

where Zm Å 4/5, 2/15, or 8/15 for m Å 0, 1, 2, respectively.
A. 2U Potential (Fig. 3b) The correlation times t31 and t32 and the factors C1 , C2 ,

and C3 can be obtained by solving the following set of differ-
The autocorrelation function for a double minimum poten-

ential equations which describes the time dependence of the
tial well in a polycrystalline sample involves only one corre-

populations PA , PB , and PC of the relaxation vectors at the
lation time tc and can be written as (50–54)

separate sites (52) :

»Fm( t)Fm*( t/ t) …Å ZmFC1/ C2expS0 ÉtÉ

t2
DG , [17] dPA

dt
Å 0(kAB / kAC)PA / kBAPB / kCAPC [23]

where Zm Å 4/5, 2/15, or 8/15 for m Å 0, 1, 2, respectively, dPB

dt
Å kABPA 0 (kBA / kBC)PB / kCBPC [24]

and
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200 REYNHARDT AND LATANOWICZ

x (n )
1 Å 1 [40]dPC

dt
Å kACPA / kBCPB 0 (kCB / kCA)PC . [25]

For very high barriers EAC and ECA , kAC Å kCA Å 0. The
x (n )

2 Å

Z0(a11 0 ln) a13

0a21 a23
Z

Za12 a13

(a22 0 ln) a23
Z

[41]correlation times are

1/t31 Å 0l2 [26]

1/t32 Å 0l3 , [27]

where l2 and l3 are the eigenvalues of the matrix
x (n )

3 Å

Za12 0(a11 0 l1)

(a22 0 l1) 0a21
Z

Za12 a13

(a22 0 ln) a23
Z

. [42](a11 0 l) a12 a13

a21 (a22 0 l) a23

a31 a32 (a33 0 l)

Here n Å 1, 2, 3 andÅ
(0kAB0 kAC0 l) kBA 0
kAB (0kBA0 kBC0 l) kCB

0 kBC (0kCA0 kCB0 l)

[28]

C (1)
1 Å

1 x (1)
2 x (1)

3

0 x (2)
2 x (2)

3

0 x (3)
2 x (3)

3

W
[43]

and

l1 Å 0 [29]

l2 Å
0(J / Q)

2
[30] C (2)

1 Å

x (1)
1 1 x (1)

3

x (2)
1 0 x (2)

3

x (3)
1 0 x (3)

3

W
[44]

l3 Å
0(J 0 Q)

2
[31]

JÅ kAB/ kBA/ kCB/ kBC/ kAC/ kCA [32] C (3)
1 Å

x (1)
1 x (1)

2 1
x (2)

1 x (2)
2 0

x (3)
1 x (3)

2 0
W

[45]

Q Å [J 2 0 4(kABrkBC / kCBrkBA / kABrkCB

/ kBArkAC / kCArkAB / kCArkBA

/ kBCrkCA / kACrkCB / kBCrkAC)]1/2 [33] C (1)
2 Å

0 x (1)
2 x (1)

3

1 x (2)
2 x (2)

3

0 x (3)
2 x (3)

3

W
[46]

C1 Å C (1)
1 PAS1 / C (2)

1 PBS2 / C (3)
1 PCS3 [34]

C2 Å C (1)
2 PAS1 / C (2)

2 PBS2 / C (3)
2 PCS3 [35]

C3 Å C (1)
3 PAS1 / C (2)

3 PBS2 / C (3)
3 PCS3 . [36]

C (2)
2 Å

x (1)
1 0 x (1)

3

x (2)
1 1 x (2)

3

x (3)
1 0 x (3)

3

W
[47]

Also

S1 Å x (1)
1 R(A)R(A) / 1

2x
(1)
2 R(A)R(B)(3 cos2uAB 0 1)

/ 1
2x

(1)
3 R(A)R(C)(3 cos2uAC 0 1) [37] C (3)

2 Å

x (1)
1 x (1)

2 0
x (2)

1 x (2)
2 1

x (3)
1 x (3)

2 0
W

[48]

S2 Å 1
2x

(2)
1 R(A)R(B)(3 cos2uAB 0 1) / x (2)

2 R(B)R(B)

/ 1
2x

(2)
3 R(B)R(C)(3 cos2uBC 0 1) [38]

S3 Å 1
2x

(3)
1 R(A)R(C)(3 cos2uAC 0 1)

C(1)
3 Å

0 x (1)
2 x (1)

3

0 x (2)
2 x (2)

3

1 x (3)
2 x (3)

3

W
[49]

/ 1
2x

(3)
2 R(B)R(C)(3 cos2uBC 0 1)

/ x (3)
3 R(C)R(C) , [39]

where R(A) , R(B) , and R(C) are the discrete values of C (2)
3 Å

x (1)
1 0 x (1)

3

x (2)
1 0 x (2)

3

x (3)
1 1 x (3)

3

W
[50]

R03
ik or CQF, with
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201COMPLEX MOTION IN HYDROGEN-BONDED SOLIDS

f 1
1( t) Å R( t)sin q( t)cos q( t)exp[ if( t)] [60]

f 1
2( t) Å r( t) [61]

C(3)
3 Å

x (1)
1 x (1)

2 0
x (2)

1 x (2)
2 0

x (3)
1 x (3)

2 1
W

, [51] f 2
1( t) Å R( t)sin2q( t)exp[02if( t)] [62]

f 2
2( t) Å r( t) , [63]

where

where R( t) Å R03
ik ( t) or R( t) Å CQF( t) and r( t) Å 1. The

W Å
x (1)

1 x (1)
2 x (1)

3

x (2)
1 x (2)

2 x (2)
3

x (3)
1 x (3)

2 x (3)
3

. [52] r value can also be time dependent if, for example, the proton
pair distance changes due to the jumping or tunneling along
the hydrogen bond of one proton. Assume that the time

At a given time t the molecules are statistically distributed dependence of f m
1 ( t) is due to thermally activated jumps

among the three possible sites with probabilities PA , PB , and over the barrier and that the time dependence of f m
2 ( t) is

PC . These probabilities are due to tunneling.

A. 2U Potential
PA Å

1

KAB / KAC / 1
[53]

Recently Meyer and Ernst (60) calculated the spectral
densities for a tunneling motion. Skinner and Trommsdorff

PB Å
1

K01
AB / KBC / 1

[54] (19) employed the Look and Lowe double inequivalent site
model (50) and jump probabilities given by Eqs. [2] to [5]
to calculate these values. In the Look and Lowe model it is

PC Å
1

K01
AC / K01

BC / 1
, [55]

assumed that the time for a jump between two potential
minima is shorter than the lifetime at the equilibrium site.
Therefore, the correlation functions for jumps over the bar-where KAB Å kAB /kBA , KBC Å kBC /kCA , and KAC Å KAB 1 KBC .
rier and tunneling in the 2U potential (Fig. 3b) follow from
Eqs. [17] and [58] to [63],CORRELATION FUNCTIONS FOR COMPLEX MOTION

CONSISTING OF TUNNELING AND JUMPS
OVER THE BARRIER

» f m
1 ( t) f m*1 ( t/ t) …Å Zm[C (O)

1 / C (O)
2 ]expS0 ÉtÉ

t (O)
2
D ,

We assume that jumps over the barrier and tunneling
through the barrier are two independent reorientations. The

[64]geometries of both motions are the same, but the rate con-
stants kxy , where x , y å A , B , C , are different and each

» f m
2 ( t) f m*2 ( t/ t) …Å C (T)

1 / C (T)
2 expS0 ÉtÉ

t (T)
2
D , [65]motion has its own spectral density. Woessner (57) proved

that if the random function for two independent reorienta-
tions can be written as a product of the functions, which

where the correlation times for jumps over the barrier andare time dependent due to the separate reorientation, the
tunneling arecorrelation function for the complex motion is also a product

of two correlation functions, that is
1

t (O)
2

Å k (O)
12 / k (O)

21 / k (O)
23 / k (O)

32 [66]
Fm( t) Å f m

1 ( t) f m
2 ( t) [56]

»Fm( t)Fm*( t / t) … 1
t (T)

2

Å k (T)
12 / k (T)

21 / k (T)
23 / k (T)

32 . [67]
Å » f m

1 ( t) f m*1 ( t / t) … » f m
2 ( t) f m*2 ( t / t) … . [57]

k (O)
12 , k (O)

21 , k (O)
23 , k (O)

32 and k (T)
12 , k (T)

21 , k (T)
23 , k (T)

32 are rate constantsDunn and McDowell (58) and Latanowicz and Reynhardt
for jumps over the barrier and tunneling, respectively, with(47, 59) developed a theory for a complex motion of molec-

ular groups in solids. With a view to expressing the Fm( t)
functions given in Eqs. [11] to [13] as products of two

C (O)
1 Å K (O)

AB

(K (O)
AB / 1)2functions f m

1 ( t) and f m
2 ( t) , we write

f 0
1( t) Å R( t)(1 0 3 cos2q( t)) [58] 1 [K (O)01

AB R(A)R(A) / K (O)
AB R(B)R(B)

/ R(A)R(B)(3 cos2uAB 0 1)] [68]f 0
2( t) Å r( t) [59]
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202 REYNHARDT AND LATANOWICZ

C3 Å C (T)
1 C (O)

2 [77]
C (O)

2 Å K (O)
AB

(K (O)
AB / 1)2 C4 Å C (O)

2 C (T)
2 [78]

1 [R(A)R(A) / R(B)R(B)
and

0 R(A)R(B)(3 cos2uAB 0 1)] [69]

C (T)
1 Å K (T)

AB

(K (T)
AB / 1)2

1
t i

2

Å 1
t (O)

2

/ 1
t (T)

2

. [79]

1 [(K (T)01
AB r( A)r( A) / K (T)

AB r( B)r( B)
The spectral density for this complex motion is

/ r( A)r( B)(3 cos2uAB 0 1)] [70]

Jm(v) Å ZmFC2
2tT

2

1 / (vtT
2 )2C (T)

2 Å K (T)
AB

(K (T)
AB / 1)2

1 [r( A)r( A) / r( B)r( B) / C3
2tO

2

1 / (vtO
2 )2 / C4

2t i
2

1 / (vt i
2) 2G .

0 r( A)r( B)(3 cos2uAB 0 1)] . [71]

[80]The equilibrium constants K (O)
AB and K (T)

AB are

Using this spectral density, the relaxation rates due to jumpsK (O)
AB Å

k (O)
12

k (O)
21

Å k (O)
23

k (O)
32

[72]
over the barrier and tunneling in an inequivalent double
potential well are given by

K (T)
AB Å

k (T)
12

k (T)
21

Å k (T)
23

k (T)
32

. [73]

1
T1(1r )

Å C[C2 f (t (T)
2 ) / C3 f (t (O)

2 ) / C4 f (t i
2)] , [81]

R(A) and R(B) are the values of the functions R03
ik or CQF.

r( A) and r( B) are the values of the function r( t) Å 1 at
the A and B sites. If R(B) x R(A) , r( A) Å 1 and r( B) Å where
R(B) /R(A) . Therefore, the correlation functions of a com-
plex motion consisting of tunneling and jumps over the bar-

C Å 3
10g

4
I \ 2 [82]

rier are

for homonuclear dipolar 1/T1 and 1/T1r with spin Å 1
2,

»Fm( t)Fm*( t/ t) …Å ZmFC (O)
1 / C (O)

2 expS0 ÉtÉ

t (O)
2
DG

C Å 2
15S(S / 1)g 2

I g
2
S [83]

1 FC (T)
1 / C (T)

2 expS0 ÉtÉ

t (T)
2
DG

for heteronuclear dipolar 1/T1 and 1/T1r , and

C Å 3
10p

2 [84]Å ZmFC1/ C2expS0 ÉtÉ

t (T)
2
D

for deuteron 1/T1 . Also

/ C3expS0 ÉtÉ

t (O)
2
D

f (t) Å t

1 / v 2
I t

2 /
4t

1 / 4v 2
I t

2 [85]

/ C4expS0 ÉtÉ

t i
2
DG , [74]

for a homonuclear dipolar and deuteron 1/T1 ,

where
f (t) Å 3

2
t

1 / 4v 2
1t

2 /
5
2

t

1 / v2
I t

2 /
4t

1 / 4v 2
It

2
C1 Å C (O)

1 C (T)
1 [75]

C2 Å C (O)
1 C (T)

2 [76] [86]
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for a homonuclear dipolar 1/T1r ,
»Fm( t)Fm( t / t) … (O) Å ZmC (O)

2 expS0 ÉtÉ

t (O)
2
D [92]

f (t) Å t

1 / (vI 0 vS)2t 2 /
3t

1 / v 2
I t

2
»Fm( t)Fm( t / t) … (T) Å C (T)

2 expS0 ÉtÉ

t (T)
2
D . [93]

/ 6t
1 / (vI / vS)2t 2 [87]

However, as can be seen from Eqs. [64] and [65], the
correlation functions decrease to ZmC (O)

2 and C (T)
2 , respec-

tively. However, if we assume in Eq. [18] that k23 Å k32 Åfor a heteronuclear dipolar 1/T1 , and
0 and, therefore, t2 Å t total

2 Å (k (O)
12 / k (O)

21 / k (T)
12 / k (T)

21 )01

and substitute Eq. [18] into Eqs. [6] , [10], and [17], we
f (t) Å 4t

1 / v 2
1t

2 /
6t

1 / v 2
St

2 /
t

1 / (vI 0 vS)2t 2 obtain the equation given by Skinner and Trommsdorff (19)
(R(A) Å R(B) Å R03

ik ) :

/ 3t
1 / v 2

I t
2 /

6t
1 / (vI / vS)2t 2 [88]

1
T1

Å 9
10

g 4
I \ 2 KAB

(1 / KAB)2
R03

ik sin2u

for a heteronuclear dipolar 1/T1r .
The spectral density given by Eq. [80] can be substituted 1 F t total

2

1 / v 2
I (t total

2 ) 2 / 4
t total

2

1 / 4v 2
I (t total

2 ) 2G . [94]
into Eqs. [15] and [16] to obtain

As can be seen from Figs. 4b and 4d, the temperature depen-
M2 Å

3
2
g02C FC1 / C2

2
p

tan01(gIt
(T)
2

√
M2)

dence of T1 , given by Eq. [94], differs from that given
by Eq. [81] for the same motional parameters. The most
prominent difference is between Fig. 4a and Fig. 4b, where

/ C3
2
p

tan01(g1t
(O)
2

√
M2) K (T)

0 Å 5 1 108 s01 . For K (T)
0 Å 5 1 107 s01 (Figs. 4c and

4d) the difference is less prominent. It is also clear that at
temperatures below room temperature the difference be-1 C4

2
p

tan01(gIt
i
2

√
M2)G , [89]

tween the temperature dependence of T1 according to the
Skinner–Trommsdorff (Eq. [5]) and Nagaoka (Eq. [4])
models is negligible.where C2 , C3 , C4 , t (O)

2 , t (T)
2 , and t i

2 are given by Eqs. [75]
The temperature dependence of the second moment for ato [78], [66], [67], and [79]. The C’s are given by Eq.

complex motion consisting of jumps over the barrier (k (O)
0[82] or [83].

Å 2 1 1012 s01) and tunneling (k (T)
0 Å 2 1 1012 s01) of anThe temperature dependence of T1 for a complex motion

interproton vector Rik (Å1.6 Å) between two sites of unequal( jumps over the barrier and tunneling through the barrier)
energy (Fig. 3a) is illustrated in Fig. 5. The temperatureof an interproton vector Rik (Å1.6 Å) , between two sites of
dependencies of the separate motions are also shown in theseunequal energy (Fig. 3a) , is illustrated in Figs. 4a–4d. The
figures.temperature dependence for the separate reorientations

Using the Skinner–Trommsdorff tunneling rate constant( jumps over the barrier and tunneling) is also shown in
(Eq. [5]) , it is clear that different calculations of the correla-these figures. At low temperatures the relaxation rates are
tion function result in temperature dependencies of the sec-dominated by the tunneling motion and a flat T1 temperature
ond moment which differ dramatically. The method pro-dependence is observed. At higher temperatures the T1 mini-
posed by Woessner (57) (Eq. [57]) leads to separate reduc-mum due to the complex motion differs from the temperature
tions for tunneling at low temperatures and hopping overdependence of T1 due to jumps over the barrier (solid lines
the barrier at high temperatures. The magnitudes of the re-in Figs. 4a–4d). Usually it is assumed that both motions,
ductions depend on the geometry of the motion. These reduc-tunneling and jumps over the barrier, contribute to the total
tions appear when the linewidth dn (2pdn Å g

√
M2) , ex-rate constants (19, 28, 34, 35, 60–62) :

pressed in frequency units, is comparable with the frequency
of the relevant molecular motion. On the other hand, thek total

AB Å k (O)
AB / k (T)

AB [90]
assumption of the total rate constant (Eqs. [90] and [91])

k total
BA Å k (O)

BA / k (T)
BA . [91] results in only one reduction at a frequency n Å

1/2pt total
2 , which is comparable with the linewidth. The cir-

cles in Fig. 5 coincide with the solid line, which shows theThis is the case if both motions contributing to the complex
motion have correlation functions which decrease to zero: temperature dependence of the second moment for tunneling
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only. Therefore, information about the composite motions C6 Å C (O)
2 rC (T)

2 [105]
is lost in the case of a complex motion.

C7 Å C (O)
2 rC (T)

3 [106]

C8 Å C (O)
3 rC (T)

2 [107]B. 3U Potential

C9 Å C (O)
3 rC (T)

3 . [108]
The correlation functions of the two motions in the 3U

potential (Fig. 3c) are given by Eq. [22] and, therefore, the
correlation function for a complex motion (tunneling motion C (O)

1 , C (O)
2 , C (O)

3 and C (T)
1 , C (T)

2 , and C (T)
3 are given by

Eqs. [34] to [36] with S1 , S2 , and S3 given by Eqs. [37] toand jumps over the barrier) can be written as a product of
the two correlation functions [39] for jumps over the barrier and

»Fm( t)Fm*( t / t) … Å ZmFC (O)
1 / C (O)

2 expS0 ÉtÉ

t (O)
31
D / C (O)

3 expS0 ÉtÉ

t (O)
32
DG

1 FC (T)
1 / C (T)

2 expS0 ÉtÉ

t (T)
31
D / C (T)

3 expS0 ÉtÉ

t (T)
32
DG

Å C1 / C2expS0 ÉtÉ

t (T)
31
D / C3expS0 ÉtÉ

t (T)
32
D / C4expS0 ÉtÉ

t (O)
31
D / C5expS0 ÉtÉ

t (O)
32
D

/ C6expS0 ÉtÉ

ti 1
D / C7expS0 ÉtÉ

ti 2
D / C8expS0 ÉtÉ

ti 3
D / C9expS0 ÉtÉ

ti 4
D , [95]

where S1 Å x (1)
1 r( A)r( A) / 1

2x
(1)
2 r( A)r( B)(3 cos2uAB 0 1)

/ 1
2x

(1)
3 r( A)r(C)(3 cos2uAC 0 1) [109]

S2 Å x (2)
2 r( B)r( B) / 1

2x
(2)
1 r( A)r( B)(3 cos2uAB 0 1)1/ti 1 Å

1
t (O)

31

/ 1
t (T)

31

[96]

/ 1
2x

(2)
3 r( B)r(C)(3 cos2uBC 0 1) [110]

1/ti 2 Å
1

t (O)
31

/ 1
t (T)

32

[97] S3 Å x (3)
3 r(C)r(C) / 1

2x
(3)
2 r( B)r(C)(3 cos2uBC 0 1)

/ 1
2x

(3)
1 r( A)r(C)(3 cos2uAC 0 1) [111]

1/ti 3 Å
1

t (O)
32

/ 1
t (T)

31

[98]
for tunneling with x n

m given by Eqs. [40 ] to [42] and
tunneling rate constants k (T )

AB , k ( T )
AC , and k ( T )

BC given by Eqs.
1/ti 4 Å

1
t (O)

32

/ 1
t (T)

32

. [99] [2 ] to [5] . If the internuclear distances change during
the tunneling motion, r ( B ) Å R (B ) /R (A ) and r (C ) Å
R (C ) /R (A ) .

The values of t ( O)
31 , t ( O )

32 , t (T )
31 , and t ( T )

32 are given by Eqs. It seems that the proper approach is to treat the separate
[ 26 ] and [27 ] , respectively. kAB , kBA , kCB , and kBC for motions as a complex motion. The spectral density for the
tunneling and jumps over the barrier are given by Eqs. complex motion is
[1] to [5] .

Jm(v)

C1 Å C (O)
1 rC (T)

1 [100] Å C2
2t (T)

31

1 / v 2t (T)
31

/ C3
2t (T)

32

1 / v 2t (T)
32

/ C4
2t (O)

31

1 / v 2t (O)
31

C2 Å C (O)
1 rC (T)

2 [101]

/ C5
2t (O)

32

1 / v 2t (O)
32

/ C6
2ti 1

1 / v 2ti 1
C3 Å C (O)

1 rC (T)
3 [102]

C4 Å C (T)
1 rC (O)

2 [103]
/ C7

2ti 2

1 / v 2ti 2

/ C8
2ti 3

1 / v 2ti 3

. [112]
C5 Å C (T)

1 rC (O)
3 [104]
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FIG. 4. The temperature dependence of T1 (75 MHz) for Rik (Å1.6 Å) hopping over the barrier (k (O)
0 Å 2 1 1012 s01) and tunneling through the

barrier ((a, b) k (T)
0 Å 5 1 108 s01 ; (c, d) k (T)

0 Å 5 1 107 s01) in a double potential well (Fig. 3a) for tunneling rates given by Eq. [5] (diamonds) and
Eq. [4] (crosses) . Sites are displaced by u Å 307. (a, c) Both motions are components of a complex motion (Eq. [81]) . (b, d) Motion is described by
a single correlation function with a common rate constant (Eqs. [90] to [94]) . Other values are EAB Å 16.8 kJ/mol and EBA Å 14.7 kJ/mol. Solid lines
represent relaxation times for separate reorientations—jumps over the barrier and tunneling.

Using these spectral densities, the relaxation rates and sec-
M2 Å

3
2
g02C FC1 / C2

2
p

tan01(gI

√
M2t

(T)
31 )ond moment of an NMR line, due to jumps over the barrier

and tunneling in a inequivalent triple potential well, are
found to be / C3

2
p

tan01(gI

√
M2t

(T)
32 )

1
T1(1r )

Å C[C2 f (t (T)
31 ) / C3 f (t (T)

32 ) / C4 f (t (O)
31 ) / C4

2
p

tan01(gI

√
M2t

(O)
31 )

/ C5 f (t (O)
32 ) / C6 f (ti 1) / C7 f (ti 2)

/ C5
2
p

tan01(gI

√
M2t

(O)
32 )

/ C8 f (ti 3) / C9 f (ti 4)] , [113]
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/ C6
2
p

tan01(gI

√
M2t

(T)
i 1 )

/ C7
2
p

tan01(gI

√
M2ti 2)

/ C8
2
p

tan01(gI

√
M2ti 3)

/ C9
2
p

tan01(gI

√
M2ti 4)G , [114]

where C and f (t) are given by Eqs. [82] to [88] and PA ,
PB , and PC are given by Eqs. [53] to [55].

The temperature dependence of the deuteron T 1 for a
complex motion of the axially symmetric field gradient
tensor ( taking qzz to be along the chemical bond directions
with CQF Å 150 kHz) involved in a complex motion
( jumps over the barrier and tunneling) between three in-
equivalent sites, as shown in Fig. 3c with EAB 0 EBA Å FIG. 6. The temperature dependence of deuteron T1 (46 MHz) ( CQF2.1 kJ /mol and ECB 0 EBC Å 0.8 kJ /mol, is illustrated in Å 150 kHz) for jumping over the barrier (k ( O)

0 Å 2 1 10 12 s01 ) and
Fig. 6. The separate temperature dependencies for jumps tunneling through the barrier (k (T )

0 Å 2 1 10 8 s01 ) in a triple potential
well for tunneling rates given by Eq. [5 ] . Sites are displaced by uAB Åover the barrier and tunneling are also shown in this fig-
uBC Å 307. (Squares ) Both motions are components of a complex motionure. For such a triple potential well a splitting of the T1
(Eq. [113] ) . (Crosses ) Motion is described by a single correlationminimum is observed for jumps over the barrier (53, 59 ) . function with total rate constants kxy , where x , y Å A , B , C (Eqs. [90 ]
and [91] ) . Other values are EAB Å 35.6 kJ /mol, EBA Å 33.5 kJ /mol, EBC

Å 15 kJ /mol, and ECB Å 16.8 kJ /mol. EAC Å ECA r ` . Solid lines
represent relaxation times for separate reorientations—jumps over the
barrier and tunneling.

The low-temperature relaxation rates are dominated by
tunneling, while the higher temperature minimum of T 1

exhibits a different temperature dependence for different
ways of treating the motions. Tunneling with a very low
activation energy (EAB 0 EBA Å 2.1 kJ /mol and EAC 0
ECA Å 0.8 kJ /mol ) contributes to T 1 over the entire tem-
perature range.

APPLICATION OF THEORY TO EXPERIMENTAL DATA
FOR NAPHTHAZARIN B

The experimental temperature dependencies of T1 (200
and 75 MHz) and T1r (H1 values of 9.8, 14, and 25 G) are
displayed in Fig. 7 for polycrystalline naphthazarin B. At
each frequency one relaxation time minimum was observed

FIG. 5. Temperature dependence of the second moment of the NMR
as a function of temperature. At high temperatures T1r de-line (Rik Å 1.6 Å) for hopping over the barrier (k (O)

0 Å 2 1 1012 s01) and
creases with increasing temperature, but a minimum was nottunneling (k (T)

0 Å 5 1 108 s01) in a double potential well (Fig. 3a) for
tunneling rates given by Eq. [5] . Sites are displaced by u Å 307. (Squares) reached.
Both motions are components of a complex motion. (Circles) Motion is Since the dynamic equilibrium between the A and B tauto-
described by a single correlation function with a common rate constant. mers (Fig. 1a) includes configurations C and C * (Fig. 1b),
Other values are EAB Å 16.8 kJ/mol and EBA Å 14.7 kJ/mol. Solid lines

which correspond to energy maxima, the 2U potential wellrepresent second moments for separate reorientations—jumps over the bar-
rier and tunneling. (Fig. 3b) was assumed and Eq. [81] was employed to ana-
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207COMPLEX MOTION IN HYDROGEN-BONDED SOLIDS

TABLE 1lyze the data in the temperature range of the observed min-
Motional Parameters for Proton Transfer in the Hydrogen Bondima. The angles uikAB and interatomic distances RikA and RikB

in Naphthazarin Bwere calculated for the separate ik spin pairs (5) . Since
each proton of the naphthazarin molecule interacts with five

Parameter Value
nearest neighbor protons, the addition of interactions was
assumed and the average value of the relaxation rate calcu- k(O)

0 (s01) 2 1 1012

k(T)
0 (s01) 5 1 108lated. The mechanism responsible for the decrease of T1r at
t0 (s) 2 1 10012

high temperatures could be due to the breaking of hydrogen
E12 (kJ/mol) 19.3

bonds and the additional motional freedom associated with E21 (kJ/mol) 16.8
it. However, since the T1r minimum was not observed, this E23 (kJ/mol) 15.9

Ea (kJ/mol) 50motion cannot be identified. The temperature dependencies
of the relaxation rates over the entire temperature range are
therefore given by
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